109 research outputs found

    Analysis of Jovian decametric data: Study of radio emission mechanisms

    Get PDF
    Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events

    Science requirements for passive microwave sensors on earth science geostationary platforms

    Get PDF
    It is suggested that the science requirements for passive geostationary microwave observations be met by near- and far-term sensors for each of two overlapping bands, with each band covering no more than a decade in frequency. The low-frequency band includes channels near 6, 10, 18, 22, 31 to 37, and possibly 50 to 60 GHz. The high-frequency band includes channels near 220 to 230, 183, 166, 118, 90 to 110, and possibly 50 to 60 and 31 to 37 GHz. The precise channel specifications will have to comply with international frequency allocations. The near-term goal is a high-frequency sensor based on a filled-aperture solid reflector antenna, which should rely on currently existing technology. The most critical issues for the near-term sensor are momentum compensation and the design of the feed assembly; these issues are coupled through the desired scan rate. The successful demonstration of the near-term (high-frequency) sensor will be essential for the continued development of far-term sensors satisfying the ideal science requirements. The far-term goal includes both a high-frequency sensor which meets the ideal science requirements, and a low-frequency sensor whose design will depend on advances in large antenna technology. The low-frequency (far-term) sensor might be based on one of several concepts: a deployable mesh reflector antenna of diameter at least 20 m, which shows promise for use at frequencies up to 30-GHz, a synthetic aperture interferometer of maximum baseline from 100 to 300 m, or a deployable phased-array bootlace lens, of diameter from 100 to 300 m. The first of these, a deployable mesh reflector antenna, will satisfy only the adequate spatial resolution requirements. The last two concepts meet the ideal spatial resolution science requirements, although they present significant structural and meteorological challenges

    High-spatial-resolution passive microwave sounding systems

    Get PDF
    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth

    Future large broadband switched satellite communications networks

    Get PDF
    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined

    Analysis of Jovian decametric data: Study of radio emission mechanisms

    Get PDF
    The Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) have produced the finest set of Jovian decametric radio emission data ever obtained. Jovian decametric L-burst and S-burst arcs were characterized and the data reconciled with models for the radio emission geometry and mechanisms. The first major results involve comparisons of the distribution of arc separations with longitudes. The identification and analyses of systematic variations in the PRA data have yielded interesting results, but only the most obvious features of the data were examined. Analyses of the PRA data were extended with the use of new 6-Sec formats that are more sensitive to the S-bursts

    Ultrafast Carrier Recombination and Generation Rates for Plasmon Emission and Absorption in Graphene

    Full text link
    Electron-hole generation and recombination rates for plasmon emission and absorption in Graphene are presented. The recombination times of carriers due to plasmon emission have been found to be in the tens of femtoseconds to hundreds of picoseconds range. The recombination times depend sensitively on the carrier energy, carrier density, temperature, and the plasmon dispersion. Carriers near the Dirac point are found to have much longer lifetimes compared to carriers at higher energies. Plasmons in a Graphene layer on a polar substrate hybridize with the surface optical phonons and this hybridization modifies the plasmon dispersion. We also present generation and recombination rates of carriers due to plasmon emission and absorption in Graphene layers on polar substrates.Comment: 7 Pages, 11 Figures, To appear in Phys. Rev. B (2011

    Analysis of Jovian decamteric data: Study of radio emission mechanisms

    Get PDF
    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA)

    Atmospheric frontal zone studies

    Get PDF
    The research supported by this contract and directed Activities in the inversion and interpretation of data produced by the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are reported. There were five principal subjects: (1) modeling of the emissivity of foam patches on the ocean surface; (2) inversion of radiometric data by a multidimensional algorithm; (3) an operational water vapor retrieval algorithm; (4) inference of Antarctic firm accumulation rates; and (5) inference of water vapor over the Arctic sea ice

    Radio Astronomy

    Get PDF
    Contains reports on four research projects.National Aeronautics and Space Administration (Grant NsG-264-62)U. S. Navy (Office of Naval Research) under Contract Nonr-3963(02)-Task 2Lincoln Laboratory, Purchase Order DDL B-00368U. S. NavyU. S. ArmyU. S. Air Force under Air Force Contract AF19(604)-7400National Aeronautics and Space Administration (Grant NsG-250-62)National Aeronautics and Space Administration (Contract NaSr-101

    Development of a stratospheric and mesospheric microwave temperature sounder experiment

    Get PDF
    A passive microwave spectrometer system for measuring global atmospheric temperature profiles from 0-75 km altitude was developed and analyzed. The system utilizes 12 channels near the 5 mm wavelength oxygen absorption band and is designed to provide global coverage by scanning perpendicular to the orbital track of a polar orbiting satellite. A significant improvement in the accuracy of theoretical atmospheric microwave transmittance functions was achieved through the development of a first-order approximation to overlapping line theory for the oxygen molecule. This approximation is particularly important in the troposphere and lower stratosphere where pressure-broadening blends nearby lines. Ground-based and aircraft observations of several resonances of stratospheric oxygen generally support the theory. The 23, 25, 29, and 31 atmospheric oxygen lines were measured and the frequencies of several such oxygen lines were measured with improved precision. The polarization and Zeeman splitting of the atmospheric 27 line was also observed
    • …
    corecore